1,406 research outputs found

    Multi-Valley Superconductivity In Ion-Gated MoS2 Layers

    Get PDF
    Layers of transition metal dichalcogenides (TMDs) combine the enhanced effects of correlations associated with the two-dimensional limit with electrostatic control over their phase transitions by means of an electric field. Several semiconducting TMDs, such as MoS2_2, develop superconductivity (SC) at their surface when doped with an electrostatic field, but the mechanism is still debated. It is often assumed that Cooper pairs reside only in the two electron pockets at the K/K' points of the Brillouin Zone. However, experimental and theoretical results suggest that a multi-valley Fermi surface (FS) is associated with the SC state, involving 6 electron pockets at the Q/Q' points. Here, we perform low-temperature transport measurements in ion-gated MoS2_2 flakes. We show that a fully multi-valley FS is associated with the SC onset. The Q/Q' valleys fill for doping≳2⋅1013\gtrsim2\cdot10^{13}cm−2^{-2}, and the SC transition does not appear until the Fermi level crosses both spin-orbit split sub-bands Q1_1 and Q2_2. The SC state is associated with the FS connectivity and promoted by a Lifshitz transition due to the simultaneous population of multiple electron pockets. This FS topology will serve as a guideline in the quest for new superconductors.Comment: 12 pages, 7 figure

    Silk reinforced with graphene or carbon nanotubes spun by spiders

    Full text link
    Here, we report the production of silk incorporating graphene and carbon nanotubes directly by spider spinning, after spraying spiders with the corresponding aqueous dispersions. We observe a significant increment of the mechanical properties with respect to the pristine silk, in terms of fracture strength, Young's and toughness moduli. We measure a fracture strength up to 5.4 GPa, a Young's modulus up to 47.8 GPa and a toughness modulus up to 2.1 GPa, or 1567 J/g, which, to the best of our knowledge, is the highest reported to date, even when compared to the current toughest knotted fibres. This approach could be extended to other animals and plants and could lead to a new class of bionic materials for ultimate applications

    Algebraic Properties of BRST Coupled Doublets

    Get PDF
    We characterize the dependence on doublets of the cohomology of an arbitrary nilpotent differential s (including BRST differentials and classical linearized Slavnov-Taylor (ST) operators) in terms of the cohomology of the doublets-independent component of s. All cohomologies are computed in the space of local integrated formal power series. We drop the usual assumption that the counting operator for the doublets commutes with s (decoupled doublets) and discuss the general case where the counting operator does not commute with s (coupled doublets). The results are purely algebraic and do not rely on power-counting arguments.Comment: Some explanations enlarged, references adde

    Initial Trajectory Assessment of the RAMSES Mission to (99942) Apophis

    Full text link
    (99942) Apophis is a potentially hazardous asteroid that will closely approach the Earth on April 13, 2029. Although the likelihood of an impact has been ruled out, this close encounter represents a unique opportunity for planetary science and defense. By investigating the physical and dynamical changes induced by this interaction, valuable insights into asteroid cohesion, strength, and internal structure can be obtained. In light of these circumstances, a fast mission to Apophis holds great scientific importance and potential for understanding potentially hazardous asteroids. To this aim, ESA proposed the mission RAMSES (Rapid Apophis Mission for SEcurity and Safety) to reach Apophis before its close encounter. In this context, the paper focuses on the reachability analysis of (99942) Apophis, examining thousands of trajectories departing from Earth and reaching the asteroid before the fly-by, using a low-thrust spacecraft. A two-layer approach combining direct sequential convex programming and an indirect method is employed for fast and reliable trajectory optimization. The results reveal multiple feasible launch windows and provide essential information for mission planning and system design

    High performance bilayer-graphene Terahertz detectors

    Full text link
    We report bilayer-graphene field effect transistors operating as THz broadband photodetectors based on plasma-waves excitation. By employing wide-gate geometries or buried gate configurations, we achieve a responsivity ∼1.2V/W(1.3mA/W)\sim 1.2V/W (1.3 mA/W) and a noise equivalent power ∼2×10−9W/Hz−1/2\sim 2\times 10^{-9} W/Hz^{-1/2} in the 0.29-0.38 THz range, in photovoltage and photocurrent mode. The potential of this technology for scalability to higher frequencies and the development of flexible devices makes our approach competitive for a future generation of THz detection systems.Comment: 8 pages, 5 figures. Submitted to Applied Physics Letter

    Optical Phonons in Carbon Nanotubes: Kohn Anomalies, Peierls Distortions and Dynamic Effects

    Full text link
    We present a detailed study of the vibrational properties of Single Wall Carbon Nanotubes (SWNTs). The phonon dispersions of SWNTs are strongly shaped by the effects of electron-phonon coupling. We analyze the separate contributions of curvature and confinement. Confinement plays a major role in modifying SWNT phonons and is often more relevant than curvature. Due to their one-dimensional character, metallic tubes are expected to undergo Peierls distortions (PD) at T=0K. At finite temperature, PD are no longer present, but phonons with atomic displacements similar to those of the PD are affected by strong Kohn anomalies (KA). We investigate by Density Functional Theory (DFT) KA and PD in metallic SWNTs with diameters up to 3 nm, in the electronic temperature range from 4K to 3000 K. We then derive a set of simple formulas accounting for all the DFT results. Finally, we prove that the static approach, commonly used for the evaluation of phonon frequencies in solids, fails because of the SWNTs reduced dimensionality. The correct description of KA in metallic SWNTs can be obtained only by using a dynamical approach, beyond the adiabatic Born-Oppenheimer approximation, by taking into account non-adiabatic contributions. Dynamic effects induce significant changes in the occurrence and shape of Kohn anomalies. We show that the SWNT Raman G peak can only be interpreted considering the combined dynamic, curvature and confinement effects. We assign the G+ and G- peaks of metallic SWNTs to TO (circumferential) and LO (axial) modes, respectively, the opposite of semiconducting SWNTs.Comment: 24 pages, 21 figures, submitted to Phys. Rev.
    • …
    corecore